Участник:TSB5/Guide to the HFR
UNDER CONSTRUCTION. EXPECT ERRORS AND OMISSIONS. FOLLOW AT YOUR OWN RISK!
The Hypertorus Fusion Reactor (HFR) is a complex long-round project, added to Atmospherics in Fusion's seventh major revision.
Words of Warning
Maintaining the HFR is hard. Maintaining the HFR is really hard. Maintaining the HFR makes managing the Supermatter Engine look like a breeze. Expect to spend half an hour just on building supporting infrastructure, then up to 15-20 minutes on running it, depending on what your goals are.
Getting the HFR operational requires knowledge of how to create uncommon gases. This typically means setting up the Incinerator to produce Hydrogen and Tritium.
Going all the way to Metal Hydrogen requires knowledge of the rarer atmospherics interactions, as well as memorizing many effects unique to the HFR.
Oh God Shit's Fucked What Do Halp
- Is integrity over ~56%? Is there someone that knows what they're doing around? Do you see Healium around, either in the moderator mix interface or in a nearby canister? If at least two out of three of those were true, leave them to it, unless they're asking for help.
- Is power offline?
- Run for the APC with an Inducer to charge it fast.
- Once power is back, run for the interface and fix the settings. Power disappearing forces the settings to bad values, and your old values don't come back when power does. Iron content goes up by ten percentage points PER SECOND while power is offline, every second counts. Continue down the list, everything will be very badly screwed even if you manage to restore power.
- If this wasn't a passing problem that the Inducer could fix (Beg the AI to help with whichever of these they can):
- Maximize SMES output.
- Turn on the Incinerator if available (the AI can do this immediately on Delta). It was usually set up for trit/H2 production earlier, can make a modest amount of energy by default, and can more energy than the SM if fully upgraded.
- If things still aren't fixed, proceed to If all else fails
- Maximize the current dampener. This almost always changes the reaction from exothermic (heating things up) to exothermic (cooling things down).
- Check: Does Heat Output's value start with a minus sign? If not:
- Immediately minimize the heating conductor.
- Minimize the fuel injection rate.
- Try changing magnetic constrictor values to see if you can find values that do make heat output negative. Minimizing is a good start. Give up after five attempts. If you can't make heat output negative, proceed to Strategy: Slowdown
- Strategy: Starvation. Good if heat output is negative, very good if the fusion mix is very small.
- Maximize the heating conductor.
- Maximize the fuel injection rate (make sure that no fresh fuel is being piped in).
- Add more gas to the moderator mix. Room temperature is about as good as frozen when compared with meltdown temperatures, and coolant cooling goes through the moderator mix anyway.
- If the fusion mix is very unbalanced, AND one of Hydrogen or Tritium is below 25 moles, CAREFULLY add whichever of the fuel components was missing at a VERY LOW RATE to help process what's left, and ultimately further reduce the fuel mix volume.
- Double check the coolant system. Add more Freezers to the coolant network until the system either stabilizes or melts down.
- Rationale: Fusion is almost always the hottest mix, and a smaller volume is easier to cool than a larger volume. The HFR restores integrity the more that the fusion mix drops below 800 moles. Many bad effects stop happening if there isn't enough fuel to run the fusion reaction.
- Strategy: Slowdown
- Minimize the heating conductor.
- Minimize the fuel injection rate (make sure that no fresh fuel is being piped in).
- Add more gas to the moderator mix. Room temperature is about as good as frozen when compared with meltdown temperatures, and coolant cooling goes through the moderator mix anyway.
- Double check the coolant system. Add more Freezers to the coolant network until the system either stabilizes or melts down.
- Rationale: If you can't make the reaction endothermic, the most you can do is minimize the rate of change and hope your coolant does the job.
- If all else fails:
- Call the shuttle.
- Consider bombing the HFR before it gets any worse (decide whether or not you want to be in the room at the time
to avoid lynchingto restore your honor).
Gas effects
Gas | Location | Energy modifier | Power modifier | Heat modifier | Radiation modifier | Fusion power |
---|---|---|---|---|---|---|
Hydrogen | Fusion Mix | 1 | 0 | 1.15 | 0 | 2 |
Tritium | Fusion Mix | 1 | 1.05 | 0 | 0 | 5 |
Helium | Fusion Mix | -1 | -0.55 | 1.05 | 0.55 | 7 |
Nitrogen | Moderator Mix | 0.35 | 0 | -0.75 | -0.45 | 0 |
CO2 | Moderator Mix | 0.55 | 0.95 | 0 | 0 | 0 |
N2O | Moderator Mix | 0.95 | -0.05 | -1.45 | 0 | 10 |
Zauker | Moderator Mix | 1.55 | 5.55 | 0 | 0 | 0 |
Anti-Noblium | Moderator Mix | 20 | 0 | 0 | 10 | 20 |
Hyper-noblium | Moderator Mix | -10 | 0 | 0 | 0 | 10 |
H2O | Moderator Mix | -0.75 | 0 | 0 | 0 | 8 |
NO2 | Moderator Mix | -0.15 | 1.45 | 0 | 0 | 0 |
Healium | Moderator Mix | -0.45 | 0 | 0 | 0 | 0 |
Freon | Moderator Mix | -1.15 | -0.75 | -0.95 | -1.15 | -5 |
O2 | Moderator Mix | 0 | 0.55 | 0 | 0 | 0 |
Plasma | Moderator Mix | 0 | 0.05 | 1.25 | -0.95 | 0 |
BZ | Moderator Mix | 0 | 0 | 0 | 1.9 | 8 |
Proto-Nitrate | Moderator Mix | 0 | 0 | 0 | 0.1 | 0 |
Stimulum | Moderator Mix | 0 | 0 | 0 | 0 | 7 |
Pluoxium | Moderator Mix | 0 | 0 | 0 | 0 | -10 |
Key parameters
Effects within Fusion reference either Fuel Consumed (F) or the Scaled rate of Production (P).
The effects we want to maximize reference P, so we try to maximize P, then set F so no excess fuel is wasted.
F = fuel injection rate / 1000 * 5 * power_level
P is clamped between 0 and F, based on heat output. Heat output tends to be either non positive or the maximum, limited by the Heating Constrictor. Once we've found a stable Heating Constrictor value for the current mix and cooling infrastructure, we can work out the ideal fuel injection rate which sets P=F, so that no excess fuel is burned.
Fusion Level 1 | Fusion Level 2 | Fusion Level 3 | Fusion Level 4 | Fusion Level 5 | Fusion Level 6 | |
---|---|---|---|---|---|---|
Temperature scale: | heat / 100 | heat / 1000 | heat / 50000 | heat / 1000000 | heat / 10000000 | |
Max P: | 5 | 5 | 1 | 10 | 5 | 30 |
FIR for F=P given max P: | 1000 | 500 | 67 | 500 | 200 | 1000 |
Min P: | .5 | .5 | .1 | 1 | .5 | .5 |
FIR for F=P given min P: | 100 | 50 | 1.34 (min 5, so always burned) | 10 | 20 | 17 |
The Fusion mix
Optimal power is the fusion mix consists of 50% tritium and 50% hydrogen. Tritium is consumed at 0.85F, Hydrogen is consumed at 0.95F. 0.5F Helium gets produced. Counterintuitively, Anti-Noblium doesn't do anything in the fusion mix except take up space and be extremely slow to remove.
The Moderator mix
The fusion mix is always Tritium, Hydrogen, and padding. The output gases have departed, and no longer have any effect on the HFR. The moderator mix is where the most interesting effects happen.
Effects tend to reference F or P. So a gas X that gets consumes at 1.1 times the current rate of production, to produce a gas Y directly in the output port at 0.5 times the current rate of production, gets written as "Consumed x1.1P. Adds Y to Output."
Gas | Description | Fusion Level 1 | Fusion Level 2 | Fusion Level 3 | Fusion Level 4 | Fusion Level 5 | Fusion Level 6 |
---|---|---|---|---|---|---|---|
Inherent | Regardless of the contents of the moderator mix, Fusion Levels have effects of their own. |
|
|
|
|
|
|
Plasma | The first production moderator gas. Your bread and butter.
Plasma adds a decent heat modifier to help the early fusion process, and has a high heat capacity that helps to slow change to moderator heat (and indirectly, fusion heat) in any direction, giving you much more time to react to anything that happens. Every gas with an interesting Moderator effect can eventually be produced from Plasma. |
With at least 100 moles:
|
With at least 50 moles:
|
With at least 10 moles:
|
With at least 15 moles:
|
With at least 30 moles:
| |
BZ | The second production moderator gas after Plasma. Your stepping stone to Proto-Nitrate. Produces the Healium necessary to run dangerous Fusion Levels for extended periods of time, for those wanting to risk it.
While Fusion Level 1 will burn through BZ rapidly with little gain, Fusion Levels 3 and above treat BZ as a catalyst, only consuming BZ at the base rate common to all gases present in the moderator mix. Massively increases radiation output. Your ability to handle Hydrogen without radiation turning it into Tritium will be very limited after this. Causes hallucinations to anyone not wearing mesons at Fusion Levels 3 and above. At Fusion Level 6, Mesons will no longer protect you from hallucinations. |
With at least 150 moles:
|
No effect | With at least 100 moles:
|
With at least 100 moles:
|
If present:
| |
Proto-Nitrate | The final production Moderator gas. Produces the rarest gases.
Massively increases radiation and heat, without increasing the rate of production. This means that when an active level of Proto-Nitrate is present, you will need to provide more cooling for the same level of production. Since you cannot remove moderator gases at Fusion Level 6, Proto-Nitrate's direct Output production is the only way to extract Fusion Level 6 heat. Being able to transfer Fusion Level 6 heat is necessary for Metal Hydrogen production. |
No effect | With at least 20 moles:
|
With at least 15 moles:
|
With at least 50 moles:
|
If present:
| |
N2O | The first gas not on the main production pathway which (technically) has a special moderator effect, and the only one that is not descended from Plasma.
Increases energy, but also massively decreases the heat modifier. Not very useful. |
No effect | With at least 50 moles:
|
No effect | |||
Freon | A safety moderator gas which quickly reduces fusion energy, and reduces the amount of cooling necessary.
At high Fusion levels, decreases heat and radiation output, without (directly) decreasing the rate of production. Comes with very strong negative energy, power, heat, and radiation modifiers, so if you're planning to use this to reduce the amount of cooling required, you'll need to factor in the need for a larger moderator mix to maintain positive energy. At Fusion Level 5, has a very high threshold to activate, but has a very strong effect. Note that this almost completely removes radiation output when active, so any local Radiation Collectors will quickly drop output as well. The HFR losing power is always a catastrophic outcome unless completely inactive. This means being switched off with the first button in its interface, not just resting at Fusion Level 0! Might be useful as an emergency moderator addition when you're losing control of a reactor. Probably more useful when combined with BZ to make more Healium. |
No effect | With at least 50 moles:
|
With at least 500 moles:
|
No effect | ||
Healium | Directly restores integrity of a heavily damaged HFR that is operating at dangerous Fusion Levels.
This is the magical red gas that will allow the daring to run the HFR at dangerous power levels for an extended period of time. However, the mechanics and their implications are quite complicated. See discussion below. |
No effect | With at least 100 moles, when the HFR has taken over 400 damage (below ~56% integrity):
|
Goals
Important gases for fusion:
- Hydrogen
- Tritium
- Proto-Nitrate
- Healium
Gases to filter and process internally:
- H2O (for Hydrogen)
- Freon (for Healium; can be used in moderator if you want)
Gases to at least collect to make sure other things don't clog up:
- Pluoxium (useful directly, can also be sold for a decent price)
- Helium (can be sold for a decent price)
Gases to optionally collect to use or sell:
- Stimulum
- Nitryl (may be worth collecting to avoid decomposition)
Gases optionally collect to sell:
- Halon (if you care about fire, you're going to be using the backpack anyway)
- Antinoblium (doesn't do anything outside of fusion, but makes cashmoney at cargo)
- Zauker (currently doesn't explode with PN, so oddly safe. Bug? Intentional removal? Makes lots of cashmoney at cargo)
Setups
NB: Hydrogen won't stay as Hydrogen around radiation even when stored in a canister, now. Fuel always needs to be mixed and piped in advance now, update your designs accordingly.
The "I have four minutes before the already unrecallable shuttle arrives"
Output gases are generally favorable with desirable effects in the moderator, and can be filtered out of the moderator mix if not, provided the Fusion Level is less than 6. So the simplest HFR setup just hardpipes output gases back into the moderator port, tries to stay within safe parameters at Fusion Level 3, and sprints for the shuttle when you screw up and hit Fusion Level 6. This is extremely simple to set up, and lets one get a feel for HFR operation without risking much.
The Cargonian
Tier 3 canisters functionally tolerate any degree of pressure and temperature, even beyond what Fusion Level 6 can throw at you. So the next simplest setup involves moving sets of tier 3 canisters around, repeatedly whacking them with an analyzer or your PDA, and throwing down ad-hoc filters to extract what is useful and discard what is not.
The Factorio
The Atmosia
Safety
Cooling
Power
Losing power is extremely bad. The settings are forcibly set to values that are not helpful for a meltdown:
magnetic constrictor to 100 heating conductor to 500 current dampener to 0 fuel injection rate to 200 moderator injection rate to 500 no waste removal
Your previous settings are not restored when power is restored!
Additionally, iron content increases by 10 percentage points every second that the HFR goes without power (!).
Healing
Various damage and healing effects, with examples for a sense of scale:
If the power level is 5 or more:
Takes damage equal to ((((fusion_mix_moles) * 1e5 + fusion_temp) / 1e5) - 2500) / 200 per atmos tick Temperature of 1e8: Take 0.5 points of damage per 100 moles over 1500 moles per atmos tick Temperature of 5e7: Take 0.5 points of damage per 100 moles over 2000 moles per atmos tick -- point at which metal hydrogen's efficiency maxes out Temperature of 2e7: Take 0.5 points of damage per 100 moles over 2300 moles per atmos tick Temperature of 1e7: Take 0.5 points of damage per 100 moles over 2400 moles per atmos tick Temperature of 2e6: Take 0.5 points of damage per 100 moles over 2480 moles per atmos tick Temperature of 1e6: Take 0.5 points of damage per 100 moles over 2490 moles per atmos tick Takes damage equal to log(10, fusion_temp) - 5 2.7 damage per atmos tick at 5e7 2 damage per atmos tick at 1e7 1 damage per atmos tick at 1e6
If the amount of moles in the fusion mix is less than 1200, or the power level is 4 or less:
Heals (800 - fusion moles) / 150 each atmos tick Heals .6 damage per atmos tick when total fusion moles are 700 Heals 2 damage per atmos tick when total fusion moles are 500 Heals 2.7 damage per atmos tick when total fusion moles are 394 Heals 4.5 damage per atmos tick when total fusion moles are 125
If fusion is active, the fusion temperature is below 5e5, and the power level is 4 or less:
Heals log(10, temperature) - 5.5 each atmos tick Heals .5 damage per atmos tick when fusion temperature is 1e5 Heals 1.5 damage per atmos tick when fusion temperature is 1e4 Heals 2.5 damage per atmos tick when fusion temperature is 1000 Heals 3.5 damage per atmos tick when fusion temperature is 100 Heals 4 damage per atmos tick when fusion temperature is 30
Takes damage equal to ((iron content rounded to nearest 100%) - 1) every atmos tick
The final sum from all of the above effects is capped to losing at most 0.5% integrity (taking 4.5 points of damage) every atmos tick.
In short: run with a starved fusion mix to avoid damage and start healing, and work on reducing temperature if you can.